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SUMMARY

In this review we examine the modifying effect of specific drugs
on apoptosis. Apoptosis is a type of cell death prevalent during many
physiological and pathological conditions, consisting of several steps,
namely, initiating stimuli, transduction pathways, effector mechan-
isms, nuclear fragmentation, and phagocytosis. Pharmacological
substances such as glucocorticoids can either induce or inhibit the
process of apoptosis in various cells depending on the type of drug and
its concentration. Understanding the mechanisms of interaction of
drugs with cells undergoing apoptosis could encourage novel thera-
peutic approaches to human diseases in which apoptosis has a critical
role.
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1. CELL DEATH

The basis of all diseases is injury to the cell. If the injury is too
great or extensive, this results in irreparable changes in structure and
function, leading to the death of the cell. Cell death has fundamental
importance in most pathological processes and it also plays an
essential role in the regulation of normal tissue turnover by
eliminating all debris formed from aged and dying cells. Ultra-
structural abnormalities shown in cells dying in a variety of circum-
stances indicate two common patterns of morphological changes /1-3/.
In the first, cell death is initiated through reactions to defined stimuli,
followed by a sequence of intracellular changes. These morphological
changes include marked swelling of mitochondria and the appearance
of dense structures in their matrix followed by progressive dissolution
of the entire cell. This type of cell death is named necrosis /4-7/.
Necrosis refers to the progressive and complete degradation of cell
structure that occurs after death. It represents irreversible damage to
cellular membranes associated with various injurious stimuli, such as
hypoxia, bacterial or viral infection, or corrosive chemicals, resulting
in lysis /8/.
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The second form of cell death, named apoptosis, is characterized
by cell shrinkage, rapid condensation of the cytoplasm and nuclear
chromatin, accompanied by blebbing of the plasma membrane. This
subsequently leads to the fragmentation of the cells into a cluster of
membrane-bound structures, apoptotic granular bodies, in which the
integrity of various subcellular organelles is initially maintained. The
apoptotic bodies are incorporated by phagocytes or neighboring cells,
DNA breaks up at the internucleosomal spaces to oligome fragments.
This type of cell death is present in physiological conditions.

Naturally occurring cell death, unrelated to any causative agent, is
also found in almost all tissues. Various terms have been used to
describe this natural death, such as physiological cell death or
programmed cell death, to distinguish it from pathological death
brought about by disease. In physiological circumstances and during
development, different sequences of events occur involving prominent
nuclear changes in response to hormonal stimuli and changes in other
subcellular targets due to T cell or natural killer (NK) cell killing
activities /9-11/.

These two distinct forms of cell death show major differences.
Necrosis is a degenerative process that is associated with irreversible
injury /12,13/. Apoptosis is connected with cellular self-destruction
rather than degeneration /7,10,11/, and requires protein synthesis and
fusion of subcellular components for its execution /14-16/. The
phenomenon of apoptosis is also implicated in the physiological
process of regulating organ size. Morphologically, apoptosis involves
fragmentation of the nucleus, fusion of the nuclear chromatin and
cytoplasm, resulting in membrane-encapsulated bodies. The presence
of these bodies interferes with normal cell function and these granules
are disposed of by neighboring cells without inflammation.

2. FEATURES OF APOPTOSIS
2.1 Occurrence

Apoptosis is involved in the programmed elimination of cells in
physiological conditions. This is an irreversible mechanism for the
elimination of excess or damaged cells. Apoptosis also occurs during
embryonic and fetal development. In adult life apoptosis regulates the
size of organs and tissues. In pathological conditions apoptosis is
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responsible for the reduction of cells in different types of atrophy and
in the regression of hyperplasia. It develops spontaneously in cancer
cells and it is increased in both neoplasm and during normal cell
proliferation triggered by a variety of agents applied in cancer
chemotherapy. Apoptosis is enhanced by cell-mediated immune
reactions and various toxins that also produce necrosis.

2.2 Morphology

Apoptosis manifests in single cells scattered in the affected organ
in an asynchronous (apparently random) fashion and it is not
associated with inflammation /2,3,10,11/. Electron microscopic
studies show that at the earliest stage, nuclear chromatin is aggregated
into dense masses attached to the nuclear membrane and cytoplasm
becomes concentrated. These changes are followed by further conden-
sation of the cytoplasm, and the nucleus breaks up into small
fragments. The chromatin is segregated and some protuberations
develop on the cell surface (blebbing). The pedunculated protuber-
ances are separate and become bounded by plasmalemmal sealing
membrane, producing apoptotic bodies. These dense masses have a
different texture from chromatin and sometimes present in the lucent
part of nuclei or in its fragments. The condensation of the cytoplasm is
often associated with the formation of vacuoles. Nuclear fragmenta-
tion and cellular budding usually characterize cells with a high
nucleus/cytoplasm ratio, such as thymocytes /11/. In the acinar cells of
the salivary gland and pancreas, the rough endoplasmic reticulum is
rearranged into whorls before the cell becomes fragmented /3/.

The apoptotic bodies are usually quickly phagocytosed by neigh-
boring cells and degraded with phagolysosomes. In epithelial and
tumor cells, similar processes are manifested and specialized mono-
nuclear phagocytes also participate in the degradation /10,11/. In
lining epithelia the apoptotic bodies are extruded from the surface
/1,17,18/.

Light microscopic studies of apoptosis show diverse pictures. The
shrinkage and budding of the cell is complete within a few minutes
and discrete apoptotic bodies can be demonstrated at the end of the
process /19,20/. The size of the apoptotic bodies varies considerably.
They can be round or oval; some represent a single relatively large
nuclear fragment surrounded by a thin cytoplasmic rim, others consist
mostly of cytoplasm with a variable number of nuclear fragments.
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2.3 Biochemistry

Early investigations of apoptosis revealed that it is an active
process rather than degeneration of the cell /7/. It is connected with
cytoplasmic and membrane surface changes, protein synthesis and
internucleosome cleavage of DNA.

The process of condensation observed by ultrastructural examina-
tions and associated with an increased density suggest that the surface
convolution and the removal of the apoptotic bodies are associated
with redistribution of cytoplasmic microfilaments /21,22/. The rapid
uptake of apoptotic bodies by neighboring cells probably depends on
changes in the carbohydrates on the surface of these bodies. It may be
that the changes in carbohydrates represent the consequences of
incorporation into the plasmalemma of membranes surrounding the
cytoplasmic vacuoles that are formed during the development of
apoptotic bodies. Discharge of the vacuole content has been described
/5,6,15/. In the early stages of apoptosis lysosomes are intact and it is
unlikely that lysosomal enzymes are involved in triggering off this
type of cell death /7,23/.

Protein synthesis seems to be a requirement in the formation of the
apoptotic bodies. Inhibitors of protein synthesis suppress the occur-
rence of apoptosis of thymocytes and chronic lymphocytic leukemia
cells treated with glucocorticoids /7,23/. Protein synthesis inhibitors
also reduce the formation of apoptotic bodies in T lymphocytes
deprived of interleukin-2 /1/, in epithelial cells at the plane of fusion
of the palliative processes in normal rat embryo /24/ and in various
cells exposed to radiation or to cytotoxic drugs /14,25-27/. All of these
results indicate that protein synthesis is a required process in the
development of apoptosis, but it is uncertain what is the role of these
proteins. The synthesis of several proteins is increased following the
treatment of thymocytes with glucocorticoids /28/ but, in contrast,
protein synthesis inhibitors do not block apoptosis induced by T
lymphocytes /29/.

Among the biochemical events of apoptosis, double-strand clea-
vage of nuclear DNA at the regions between nucleosomes is reported
for all cell types. This cleavage produces oligonucleosome fragments
and it is catalyzed by the endonuclease enzyme /30-32/. The endo-
nuclease activity and DNA breakdown is inhibited by zinc /33/. Some
papers have reported that zinc deficiency enhances apoptosis in gut
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crypts /34,35/. Itoh et al. have shown that DNA fragmentation does
not occur during cell death of immature thymocytes /36/.

Several recent studies have shown that the activation of the inter-
leukin-1-B-converting enzyme/Ced-3 family of proteases represents
the end point in apoptotic cell death /37/. Other investigations have
indicated that the loss of mitochondrial membrane potential is the
critical step in cell death /38,39/. Many members of the Bel-2 family
of genes play major roles in the regulation of the programmed cell
death in many systems /40/. This family, including Bcl-x,, are potent
inhibitors that modulate cell death through inhibition of activation of
caspases, a family of cysteine proteases /37,41,42/. Bcl-x; may thus
facilitate protection against cell death /43/. Bcl-x; can prevent apop-
tosis and maintain cell viability by averting the loss of mitochondrial
membrane potential that occurs as a consequence of interleukin 1B-
converting enzyme/Ced-3 protease activation /44/. The breakdown of
Bcel-x; during the execution phase of cell death converts it from a
protective to a lethal protein /43/.

Apoptosis is involved in the death of hematopoietic progenitor
cells after removal of the appropriate colony-stimulating factor.
Pharmacological investigations indicated the role of protein kinase C
in the suppression of apoptosis in interleukin-3 and granulocyte-
macrophage-colony-stimulating factor dependent human myeloid cells
/45,46/. Overexpression of some protein kinase C isoform in factor-
dependent human TF-1 cells enhances cell survival in the absence of
cytokine. This effect is associated with induction of Bcl-2 protein
expression, an increase over the levels in empty vector transfections
147].

3. ACTIVATION OF APOPTOSIS

Apoptosis develops in four different phases: (a) The presence of
genes regulates the occurrence of programmed cell death. This pre-
requisite has been documented in developing organisms /48,49/, and
in cell cultures /50/; (b) Various signals trigger the genetic program, or
an unbalanced signaling system can prevent the action of repressors.
Specific signaling molecules include calcium ions, glucocorticoid
hormones and sphingomyelin. Initiation can also occur by imbalanced
signaling such as lack of a growth factor /51/, or the signaling pathway
can be inhibited by the action of a toxicant /52/; (¢ ) The progression

Authenticated | xajibim@mail.ru
Download Date | 6/16/12 12:18 AM



R. Cameron and G. Feuer Drug Metabolism and Drug Interactions

of the condition leads to the expression of genes manifesting in
structural alterations, such as cytoskeletal changes, cell shrinkage,
nuclear pyknosis, chromatin changes and DNA fragmentation /53/;
and finally, (d) Death and engulfment by phagocytosis of the whole
cell or cell fragments terminates the apoptotic process /54/ (Fig. 1).
Bcl-2_family

Stimulation «—— Inhibition
Viral proteins

Gene regulation

Cell death signal
Bcl-2 family

Caspixe cascade @ Cytotoxic T-cells

/ stimulation Cytoskeletal damage

Cell surface activation

Glucocorticoids

— Ca?* ion excess

Sphingomyelin

Endonuclease activation
Structural alterations
Cell Death

Phagocytosis

Fig. 1:  Schematic illustration of various phases of apoptosis. Various stimuli such
as DNA damage, radiation, thermal actions, steroids, cytokines and other
growth factors, oxidants and other cytotoxic substances, anticancer
chemicals, withdrawal of trophic hormones, autoimmune disease, viral
infections, signaling agents and caspase cascade activation can lead to
structural damage, death and elimination of cell debris by phagocytosis.
Modified from Cameron and Feuer /8/.
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Apoptotic signaling cascades are expressed in most if not all cells;
they are usually present in inactive forms /11,55/. Apoptosis can be
triggered by a variety of physiological and stress stimuli which initiate
one or several distinct signaling pathways. The activation of the
specific pathway is dependent on the cell type and on the subcellular
organelles which are targets of each type of stress. The various
signaling pathways converge into a common final effector mechanism
that disintegrates the dying cell /56/. The activation mechanism
includes the ICE/Ced-3 family of cysteine proteases that reorganize
subcellular structures in an orderly fashion. The integrity of the plasma
membrane is preserved and the disintegrated subcellular organelles are
aggregated into apoptotic bodies (membrane-bound vesicles). Cellular
fragments or dead cells are finally eliminated by neighboring cells or
macrophages, by phagocytosis. The overall result of this process is
that individual cells can be abolished without an inflammatory
reaction producing tissue damage.

Intracellular Ca®* signals activate apoptosis /57/. Calcium overload
can trigger several lethal processes including disruption of the cyto-
skeletal organization, DNA damage, and mitochondrial dysfunction.
When Ca®* accumulates within the cytoplasm or other intracellular
compartments, sudden increase of intracellular Ca®" can quickly lead
to cell necrosis. Disturbances of Ca’* signaling can also induce
apoptosis /58/. Removal of extracellular Ca’" can prevent nuclear
changes manifesting in apoptosis, such as apoptotic body formation
and DNA degradation, demonstrating a requirement for Ca®" in apop-
tosis /57/. Transfection of WEHI 7.2 thymoma cells with calbindin, a
Ca2+-binding protein, prevents apoptosis caused by calcium iono-
phore, cAMP or glucocorticoids /59/. Several in vitro models of
apoptosis are connected with a loss of the regulation of intracellular
Ca”" level and activation of Ca®* dependent endonuclease activity /60/.
Ca’'-mediated endonuclease activation is associated with the cyto-
toxicity of aributyltin and TCDD in thymocytes /52,60/. Ca®* can
induce endonuclease activity and initiate apoptosis in malignant cells
and in cells infected with viruses /57/.

Several studies described the sphingomyelin signal transduction
pathway as an essential part in the mediation of apoptosis related to
environmental stresses and to several cell surface receptors /61.62/.
The sphingomyelin pathway is ubiquitous. Most, probably all, mam-
malian cells are able to signal through the sphingomyelin system. The
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functioning sphingomyelin pathway is connected with the formation
of ceramide that acts as a secondary messenger by activating a variety
of cell functions /63,64/. Distinct receptors signal via the sphingo-
myelin pathway following ligand binding. Ceramide mediates apop-
tosis and several cellular functions, including differentiation of pro-
myelocytes, proliferation of fibroblasts, and the survival of T9 glioma
cells. The involvement of the sphingomyelin signaling system in
apoptosis is associated with stress activation of acid sphingomyelinase
to produce ceramide, and ceramide as a secondary messenger initiates
apoptosis. Several environmental stresses that induce apoptosis, such
as ionizing radiation, heat shock, exposure to UV-C rays and oxidative
stress, bring about rapid generation of ceramide through the activation
of sphingomyelinase /62,65/. Understanding the role of pro- and
antiapoptotic signaling involved in apoptosis mediated by ceramide,
including their mode of action, may provide an opportunity to develop
pharmacological means for intervention in the process of apoptosis
166/.

4. APOPTOSIS IN PHYSIOLOGICAL CONDITIONS
4.1 Apoptosis in embryonic and fetal development

Controlled cell death is part of normal development. Several
morphological studies reported that apoptosis is involved in the
programmed elimination of cells during the embryonic and fetal
period, such as the deletion of the redundant epithelium at the plane of
fusion of the palatine processes /67/, in the differentiation of the gut
mucosa /68,69/ and the retina /70,71/ and in the removal of the
interdigital webs /10/.

4.2 Cell turnover in adult tissues

Proliferating normal mammalian cells undergo spontaneous apop-
tosis, responsible for the continuous removal of the aged cells /7,72-
76/. In slowly proliferating tissues, apoptosis balances necrosis over a
time period /11/, and the oscillation between these two processes may
be regulated by soluble factors produced locally /77/. In rapidly
proliferating tissues, the deletion of the cell is associated with move-
ment ‘from the site of production and apoptosis. These types of
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changes characterize the basal compartment of seminiferous tubules
and gut crypts /72,76/.

During the normal terminal differentiation of cells, the double-
strand cleavage of DNA shows great similarity to processes occurring
in apoptosis. This is exemplified by differentiation in the lens of the
eye /78/. Similarly, the residues of megakaryocytes remaining after
platelet release in bone marrow greatly resemble the typical ultra-
structural changes associated with apoptosis /79/. Apoptotic bodies are
found in lymphoid germinal centers of follicle cells due to apoptosis
/2/, and are formed from macrophages in spleen /80/.

4.3. Involution of adult tissues

The growth of various cell populations is controlled by hormones
and growth factors. Reduction or excess addition of these substances
triggers off a rapid decrease of cell number. In these circumstances,
the fall of trophic hormone stimulation leading to cell deletion is con-
nected with apoptosis. This occurs in the human premenstrual endo-
metrium /81/, in the human breast towards the end of the menstrual
cycle /82/, in the endometrium of the hamster at estrus /83/, in ewe
endometrium following parturition /84/, in the theca interna of sheep
ovarian follicles during atresia /85/, and in the adrenal cortex of the
neonatal rat /86/.

5. APOPTOSIS IN PATHOLOGICAL CONDITIONS
5.1 Regression of hyperplasia

In several cases in the processes of regression of hyperplasia
apoptosis is involved. This occurs after the removal of the prolifera-
tive stimulus producing hyperplasia in hepatic parenchymal cells by
phenobarbital, lead nitrate or cyproterone acetate /87,88/, bile duct
proliferation brought about by a-naphthyl isothiocyanate or ligation of
the main bile duct /89/, or pancreatic hyperplasia induced by trypsin
inhibitor /90/. In some cases hormone withdrawal is connected with
the occurrence of apoptotic processes, such as hormone-induced
hyperplasia of the adrenal cortex /11/. Apoptosis is reported in renal
parenchyma atrophy in hydronephrosis and in hepatic atrophy brought
about by mild ischemia /91/. Apoptosis occurs in tissue regression
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such as involution of hair follicles /92/, and resorption of tissue around
erupting teeth /93/. Pancreas atrophy and salivary gland duct
obstruction are associated with enhanced loss of secretory cells by
apoptosis /20,72,94/, and apoptotic changes in the vascular endothelial
cells /72/. Apoptosis is involved in the normal regression of the corpus
luteum /95/.

5.2 Pathological atrophy and apoptosis

This is frequently associated with increased levels or withdrawal of
hormones, or with reduction of growth factor. Increased progesterone
levels bring about apoptosis in cat oviduct lining /96/; increased
glucocorticoids induce apoptosis in chronic lymphocytic leukemia
cells /15/, in the cells of some lymphoid lines /97/, and in thymocytes
/98/. Castration leading to pathological atrophy of the rat prostate or
withdrawal of testosterone stimulation are connected with apoptosis of
the epithelial cells /98-101/. Withdrawal of adrenocorticotropic hor-
mone by excess prednisone administration significantly increases
apoptosis in the adrenal cortex of rats /86/.

In T lymphocytes isolated from the blood of patients with
infectious mononucleosis, the withdrawal of the T lymphocyte growth
factor, interleukin-2, induces apoptosis /102,103/.

6. DRUGS AND APOPTOSIS

Many drugs have been found to induce apoptosis in experimental
conditions or as side effects /104/. Some of these actions are direct by
affecting the death pathway; some drugs interfere with biochemical
mechanisms and these effects lead indirectly to apoptosis - for
example, azide administration inhibits ATP synthesis, diphtheria toxin
interferes with protein synthesis and subsequently apoptosis is
induced. Since varying pharmacological agents provoke the same
reaction, it may be that the effect of drugs is associated with a
nonspecific stress response leading to the formation of apoptotic
bodies (Table 1).

Chemotherapy drugs are a major example of pharmacological
agents which serve as inducers of the process of apoptosis in a number
of tissues and with a number of different cell types (Table 1). Most
prominent of this class of inducers are cytosine arabinoside (ara-C),
cisplatin, doxorubicin, etoposide, methotrexate, and taxol /81/.
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TABLE 1

Drugs and toxins that serve as inducers of apoptosis

Chemotherapeutic drugs Toxins
Adriamycin Abrin
Bleomycin Albitocin
Cisplatin B-Amyloid peptide
Cytosine arabinoside (ara-C) Aphidicolin
Doxorubicin Azide
Etoposide Colcemid
Methotrexate Colchicine
Myleran Copper salts
Taxol 1,1-Dichloroethylene
Vincristine Ethanol

Heliotrine

Mercury salts
Mycin
Raw soya flour

Ricin

Several mechanistic steps have been identified by studying the
effects of ara-C on the process of apoptosis in various cell types. It has
been demonstrated that mitogen activated protein kinase and protein
kinase C are critical to the apoptotic effects of ara-C in HL-60
promyelocytic leukemic cells /105/. Nandy et al. found that leukemic
cell apoptosis was further potentiated by drug synergism with ara-C
and a new class of iso-indole derivatives /106/. The mechanism of this
synergistic effect on apoptosis was reported to be related to inhibition
of ribonucleotide reductase. In another study by Nakamura et al. using
human non-lymphocytic leukemic cells, they showed the possible
involvement of Fas and the Fas ligand system in the apoptotic effect of
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ara-C therapy by using anti-Fas IgM monoclonal antibodies in vitro
/107/. Cisplatin-induced apoptosis in human proximal tubular epi-
thelial cells in vitro is associated with the activation of the Fas ligand
system /108/.

Doxorubicin or adriamycin is a commonly used drug in the
chemotherapy of breast cancer but its mechanism of action at the
cellular level is not well understood /109/. It had been suggested that
doxorubicin acts to suppress apoptosis of human breast cancer cells
but in vitro studies revealed that drug resistance to apoptosis with
doxorubicin correlated more with an increase in DNA synthesis.

Etoposide-induced apoptosis appears to be mediated by protein
kinase C and caspases /110/. In another in vitro study of etoposide-
induced apoptosis, it was shown that a calcium binding protein of the
endoplasmic reticulum had protective functions against calcium-
induced apoptosis /111/. Etoposide, used mainly for the treatment of
testicular cancer and small cell lung carcinomas, has been shown to be
a p53 activating topoisomerase II inhibitor. The main side effect of
etoposide therapy is bone marrow depression with leukopenia and
thrombocytopenia. In an attempt to identify the genes responsible for
etoposide-induced apoptosis in a variety of tumor cell lines, Wang et
al. utilized DNA chip technology to simultaneously display changes of
gene expression during etoposide-induced apoptosis using a number
of cell lines, and at least 12 genes were characterized which were
shown to be p53 responsive genes /112/.

The apoptosis of peripheral human T cells in vitro when exposed to
methotrexate for eight hours was shown to be independent of CD95
when given at a dose range of 0.1-10 uM /113/. In contrast, the
apoptotic cell death of human keratinocytes in vitro after exposure to
0.1 uM methotrexate was associated with the overexpression of p53
/114/.

Taxol shows cytotoxicity to tumor cell lines in the form of
apoptosis at doses of 0.005-0.5 uM concentration and necrosis at drug
concentrations of 5 to 50 uM in vitro. Taxol is shown to increase the
polymerization of microtubules and stimulate formation of micro-
tubule bundles which block entry into the S phase /115/. The
inhibition of S phase entry and of cell proliferation led to the induction
of necrosis in various breast cancer cell lines. In a similar study by
Torres and Horwitz, low concentration exposures led to disruption of
the normal microtubule cytoskeleton, and at higher concentrations
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there was terminal mitotic arrest and cytotoxicity by means of the Raf-
1-dependent pathway /116/. Apoptosis by taxol of various breast
cancer cell lines was shown to be mediated by phosphorylation of Bcl-
2 and by means of cytosolic accumulation of cytochrome ¢ /117/. This
process was shown by Ebrato ef al. to be related also to p34 mediation
and inhibited by Bcl-x; overexpression /118/. Fan showed that taxol-
induced apoptosis seemed to be dependent on a sustained block of
mitosis by means of its effects on microtubules and cell cycle arrest
/119/. Using a member of the taxoid family of chemotherapy drugs,
mainly taxotere which is a semi-synthetic compound prepared from
needles of the yew tree, Birchem et al. also showed that phosphoryla-
tion of the apoptosis blocker Bcl-2 seemed to be responsible for
sensitizing the MCF-7 breast cancer cell lines to doses and concen-
trations as low as 5 nM taxotere leading to apoptotic cell death/120/.

7. GLUCOCORTICOID-INDUCED APOPTOSIS

King and Cidlowski showed that glucocorticoids induced Gl cell
cycle arrest and apoptosis in transformed lymphoid cells /121/.
Decreased expression of cell cycle components c-myc and cyclin D3
was essential for glucocorticoid-induced growth arrest and death in
these dividing cells. Thompson showed further that the induction and
suppression of the c-myc gene was quantitatively controlled by a
number of intracellular variables, and inappropriate expression of c-
myc or gross overexpression of the c-myc gene can lead to apoptosis.
Cells may also be sensitized to a variety of apoptotic agents by the
expression of c-myc /122/.

Schmidt et al. showed that glucocorticoid-induced human mono-
cyte apoptosis was mediated through the introduction of interleukin-
1B /123/. Ramdass et al. showed that the glucocorticoid dexametha-
sone inhibited cell growth in vitro of human leukemic T cells, leading
to G1 arrest and also significant internucleosomal DNA fragmentation
/124/. In another study of glucocorticosteroid-induced apoptosis of
lymphocytes, by Distalhorst and Dubiak, it was found, with respect to
the role of extracellular calcium, that peripheral T lymphocytes were
not responsive whereas thymocytes were sensitive to calcium-medi-
ated glucocorticoid-induced apoptosis /125/. Fan showed that gluco-
corticoids also had an inhibitory action on apoptotic cell death induced
by taxol /119/. Similarly, studies by Huang and Cidlowski showed that

Authenticated | xajibim@mail.ru
Download Date | 6/16/12 12:18 AM



R Cameron and G. Feuer Drug Metabolism and Drug Interactions

glucocorticoid treatment protected T lymphocytes from apoptosis in
vitro when T cells were serum depleted /126/. Rogatsky ef al. further
showed that not only the repressing or inhibiting activity of gluco-
corticoids on apoptotic cell death but also the inducing activity of
glucocorticoids on apoptosis is mediated through the glucocorticoid
receptor /127/. Hofmann et al. found that the induction or inhibition
activities of glucocorticoids (Table 2) varied depending on the type of
natural or synthetic steroid hormone used /128/. For example,
betamethazone, triamcinolone, dexamethasone and clobetasol were
efficient inducers of gene expression of the glucocorticoid receptor
and of apoptosis.

TABLE 2

Pharmacological agents that serve as
inhibitors of apoptosis

Calpain inhibitors

Cysteine protease inhibitors
o-Hexochlorocyclohexane
Phenobarbital

PMA (phorbol ester)

Miscellaneous drugs

Inflammatory responses are mediated by polymorphonuclear
leukocytes which persist in tissues during inflammatory processes and
are eliminated by apoptosis and phagocytosis during the resolution of
the inflammatory process. Liu ef al. have studied a variety of anti-
inflammatory glucocorticoids for their effect on this clearance
mechanism /129/. They found that pretreatment of semi-mature 5-day
human monocyte-derived macrophages for 24 hours with methyl
prednisone, dexamethasone, or hydrocortisone potentiated the phago-
cytosis of apoptotic neutrophils. This effect was not seen with non-
glucocorticoid steroids, aldosterone, estradiol or progesterone.
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8. TOXIC CHEMICALS

Chronic copper administration is connected with increased hepatic
apoptosis in sheep /130/. Acute lethal doses of copper or mercury to
rainbow trout cause massive apoptosis in the gills /131/. Various
hepatotoxins, such as 1,1-dichloroethylene, albitocin and heliotrine,
given to experimental animals in high doses, produce zonal necrosis;
administered in smaller doses, they enhance apoptosis in less severely
affected hepatic parenchyma /6,7,23/. Colchicine causes apoptosis in
gut crypt /132/, intetphase lymphocytes /133/, and affects micro-
tubules. Toxic plant proteins, mycin and also diphtheria toxin,
inhibitors of protein synthesis, all induce apoptosis in mouse colonic
crypts /134/. Apoptosis is also involved in the damage of the adrenal
cortex of rats brought about by 9,10-dimethyl-1,2-benz[a]anthracene
/135/. In acute mesodermal cell death, apoptotic changes produced by
the teratogenic compound 7-hydroxymethyl-12-methylbenz[a]anthra-
cene in the developing rat are probably the consequence of the site-
specific induction of this condition in the embryo /136/. Shiga toxin
from Shigella dysenteriae causes apoptosis in the absorptive epithelial
cells of rabbit small intestine /137/.

Treatment of several cultured mammalian cells with cell cycle
phase specific antiproliferative drugs commonly results in apoptosis
/138/. The cytotoxic outcome of low concentrations of colcemid, an
anti-mitotic drug, on HelLa 53 cells is the induction of multipolar
spindles and multipolar divisions. Aphidicolin, an inhibitor of DNA
synthesis, causes apoptosis which varies as a function of aphidicolin
concentration. It occurs at later times after the cells have progressed
further through the S phase /139/. These results indicate that the target
of drug action in the cell cycle differs with colcemid and aphidicolin,
which has secondary importance in the induction of cytotoxicity and
apoptosis.

8.1 Ethanol

Dalhoff et al revealed that neutrophils derived from ethanol-
treated human volunteers showed increased apoptosis in vitro com-
pared to control human neutrophils /140/. Ethanol-induced apoptosis
of peritoneal macrophages harvested from ethanol-treated rats was
shown by Singhal et al. to be mediated by TGFp produced by the
macrophages /141/. These investigators also showed that ethanol-

Authenticated | xajibim@mail.ru
Download Date | 6/16/12 12:18 AM



R. Cameron and G. Feuer Drug Metabolism and Drug Interactions

induced neutrophil apoptosis was associated with nitric oxide
generated by the neutrophils /142/. When normal human primary
hepatocytes and HepG2 cells were exposed to ethanol concentrations
of 40-80 mM, the rate of apoptosis was dose dependent /143/.

9. CONCLUSIONS REGARDING APOPTOSIS IN VIVO

Apoptosis is a well established process that plays an important role
in a variety of physiological and pathological conditions. Apoptosis
represents a process of cell death that is manifested in all multicellular
organisms. The phenomenon of apoptosis varies with cell type and the
stimulus. The unique character of apoptotic cell death is that it is
regulated developmentally; it is also called programmed cell death
/144/. Cells dying during development undergo a unique and distinct
set of structural changes which are similar or identical to changes
occurring in cells dying in a wide variety of circumstances outside of
development, such as normal cell turnover in several tissues and in
tumors, killing by T-cells, atrophy induced by endocrine and other
physiological stimuli, negative selection within the immune system,
and cell turnover following exposure to some toxic compounds,
chemotherapy, hypoxia or low doses of ionizing radiation. The process
of cell death by apoptosis is clearly different from necrosis which is
the consequence of extreme alterations of the cellular microenviron-
ment.

The process of apoptosis can be divided into several steps: (a) the
stimulus that initiates the cell death response; (b) the pathway by
which the message is transferred to the cell; and (c) the effector
mechanisms that carry out the death program /145/ (Fig. 1). The dying
cell separates from its neighbors with a loss of specialized membrane
structures and undergoes a period of distortion. Diverse stimuli may
trigger the death response in the cell in different ways, but the
pathways converge onto the same effector mechanisms with several
identical key components, including a family of proteases called
caspases. Following activation, these proteases are directly or in-
directly responsible for the varying morphological or biochemical
changes characteristic of apoptosis. Finally, the neighboring cell
efficiently phagocytoses the apoptotic cells.

Apoptosis is a gene-regulated phenomenon, and great progress has
been made in revealing the mechanisms involved in this type of cell
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death. The occurrence of apoptotic cell death may provide a new
insight into certain diseases. Further studies at the molecular level may
lead to a clear view of the etiology and development of these diseases.
A comprehensive understanding of the great variety of cellular
processes that occur during apoptosis and further application of our
knowledge concerning cell death can provide a solid basis for the
development of novel therapeutic approaches and more effective ways
of vaccination or gene therapy /104,145,146/. It may also open new
avenues to the application of pharmacological substances in diseases
associated with apoptotic cell death.

10. EXPERIMENTAL STUDIES OF DRUG-INDUCED APOPTOSIS

A variety of man-made and naturally occurring chemicals can
induce apoptosis in a number of cell types /8,147/. We have been
studying the process of the induction of apoptosis by selected drugs in
vitro and in vivo. The chemotherapeutic drug methotrexate induces
apoptosis in skin cells and liver cells in vitro and, in addition,
apoptosis of hepatocytes was observed in liver biopsies of patients
treated with methotrexate for psoriasis. In a series of further studies,
we also examined the drugs acetaminophen and valproic acid for their
apoptotic inducing effects on hepatocytes in vitro /147/.

10.1 Methotrexate-induced apoptosis

Methotrexate is an antimetabolite which binds to the enzyme
dihydrofolate reductase. It acts by inhibiting the synthesis of purine
and pyrimidine nucleotides and appears to exert its toxicity by means
of DNA strand breakage in cells of the liver and skin /148/. The
mechanism of methotrexate toxicity to hepatocytes has been studied
by a number of groups /149-153/. It was suggested from these studies
that one mechanism of apoptosis induction in hepatocytes is
associated with CD95 receptor ligand interaction. Methotrexate is
known to upregulate CD95 receptors. Methotrexate-induced apoptosis
of hepatocytes was also shown to be mediated by caspases /151/. In
our studies, we investigated the effect of this compound on normal
neonatal primary skin cells, epidermal skin cells of A431 line, normal
human primary hepatocytes, and human HepG2 cells. The presence of
cytokines and the level of cytotoxicity in apoptosis were examined, as
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well as cytoviability, by transmission electron microscopy and gluta-
thione content. In addition, we attempted to quantify the differences in
morphology found in electron micrographs from liver biopsies of
patients with methotrexate toxicity. We also examined the effect of
methotrexate in combination with ethanol. It was concluded that at
low doses, methotrexate or ethanol will not cause cellular apoptosis;
however, ethanol produces oxidative stress which can then promote
methotrexate-induced apoptosis /147/.

Methotrexate added alone at a dose of 10 mM caused some hepato-
cytes to enlarge in parallel with mild steatosis with the appearance of
lipid droplets. Similarly, the addition of 40 mM ethanol to hepatocytes
for 24 hours in vitro showed few, if any, differences compared to
control cells. We had previously found that a dose of 80 mM ethanol
to similar cells for 24 hours induced a number of toxic effects,
including changes in mitochondria and striated endoplasmic reticulum
(SER), and accumulation of abundant lipid vesicles /154/. The
addition to hepatocytes of this subtoxic dose of 40 mM ethanol with
10 mM methotrexate for 24 hours in vitro resulted in a number of
toxic manifestations, including increases in numbers of lipid droplets,
enlargement of the SER, and changes in mitochondria with a reduction
in the number of mitochondrial cristae. Similar effects were further
accentuated if an additional dose of the same combination of ethanol
and methotrexate were added for another 24 hours. There was a
threefold increase in the number of lipid vesicles, further ballooning of
the SER and further alterations in mitochondria. In addition, many
hepatocytes became apoptotic, as evidenced by dense aggregations of
nuclear chromatin. Image analysis of hepatocytes exposed to the
combination of ethanol and methotrexate showed that these cells were
much larger at 6025 + 345 microns compared to controls exposed only
to plain medium which were 4425 £ 525 microns in size. In addition,
electron microscopic morphometry showed the hepatocytes exposed to
methotrexate plus ethanol had a threefold increase in the length of
mitochondria, 2.5-fold increase in the diameter of lipid droplets and a
twofold increase in the number of lipid droplets per cell compared to
control untreated hepatocytes in vitro /147/.

Methotrexate has been a commonly used and effective drug in the
treatment of psoriasis, a skin condition which involves the formation
of scaly and itchy plaques on the skin. Heenen ef al. /114/ found that
keratinocytes from psoriatic plaques were resistant to apoptosis.
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Psoriatic plaques have also been shown by Wrone-Smith er al. to
overexpress Bcl-x;, an apoptosis inhibiting protein /155/. Methotrexate
may serve to reduce the hyperplasia characteristic of psoriatic skin by
means of the induction of apoptosis in keratinocytes /114/. Snyder
proposed that the mechanism of methotrexate toxicity involves the
depletion of cellular deoxynucleoside triphosphate pools which affect
the DNA excision repair process in cultured human fibroblasts /156/.
This effect on DNA synthesis can lead to a deoxynucleotide pool
imbalance and subsequently to apoptosis. Skin cells which were
studied were obtained from two sources: one source was skin obtained
of healthy neonates and the second was cultured skin cells of the
epidermal cell line A431, obtained from the Wistar Institute, Phila-
delphia, PA. When keratinocytes of the A431 cell line were exposed
to a combination of 40 mM ethanol and 10 mM methotrexate for two
doses over 48 hours in culture, multiple apoptotic skin cells were
evident, similar to what was seen with hepatocytes in vitro /147/.

10.2 Acetaminophen-induced apoptosis of hepatocytes and skin cells in
vitro

Exposure to acetaminophen in vitro is cytotoxic to human hepato-
cytes, particularly when glutathione is depleted. Glutathione substrates
are depleted in the process of detoxification of acetaminophen and can
be replenished by sulthydryl compounds from the diet or by cystine-
containing drugs, such as N-acetylcysteine. Protection against acet-
aminophen hepatotoxicity, therefore, could be induced by agents such
as N-acetylcysteine. Acetylcysteine acts in a similar manner to
glutathione by preventing the binding of the toxic metabolite of
acetaminophen to liver cell macromolecules. Apoptosis was observed
in hepatocytes in vivo when high doses of acetaminophen were
administered to ICR mice. DNA fragmentation began at 2 hours post
treatment and extended to 24 hours. The morphological appearance of
apoptosis, namely, nuclear condensations, began as early as 2-6 hours
after exposure to acetaminophen. We have shown similar responses in
vitro /147/.

10.3 Valproic acid-induced apoptosis of hepatocytes in vitro

Valproic acid is a drug frequently used in the treatment of epilepsy.
This drug has excellent therapeutic effects in the treatment of several
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forms of epilepsy but has been linked in rare cases to severe and fatal
hepatotoxicity /157/. Anti-convulsants such as valproic acid typically
present with idiosyncratic hepatotoxicity, but the risk of fatal
hepatotoxicity has been rare, in one study reported as 1 in 50,000
/158/. This study also reported that 90% of patients with valproic acid-
induced fatal hepatic failure were below the age of 20.

Various studies have elucidated possible mechanisms of hepato-
toxicity /157-162/. One significant factor derived from these studies is
the production of the toxic metabolite 4-en-valproate, which is the
favored metabolite when the metabolism of valproic acid is shifted
from the usual B-oxidation to w-oxidation. Induction of cytochrome
P450 activity favors the shift towards this type of metabolism of
valproic acid. The reactive metabolites formed by this pathway then
bind to macromolecules, deplete glutathione, and inhibit fatty acid
metabolism, resulting in hepatic microvesiscular steatosis. Patients
taking valproic acid had low levels of the cofactors carnitine,
coenzyme A and acetyl-coenzyme A, which are necessary for the B-
oxidation of fatty acids. Carnitine deficiency may predispose these
patients to hepatoxicity due to the increasing serum fatty acid levels
which then promote the shift of metabolism of valproic acid towards
the pathway which generates reactive intermediates. Takeuchi et al.
reported that co-administration of D,L-carnitine and albumin reduced
valproic acid hepatotoxicity /159/. Studies by Fisher et al. showed that
the toxicity of valproic acid and its metabolites had a range of toxicity
in liver slices from adult or weanling rats that were similar to the
toxicities in slices derived from human livers /163/. A study by
Jurima-Romet et al. found that depleted levels of glutathione were
critical for valproic acid toxicity to rat hepatocytes in vitro, and found
a protective effect of antioxidants such as vitamins C and E /161/.

We have shown that valproic acid hepatotoxicity is enhanced in
vitro by inducers of cytochrome P4502E1 /143/. Normal human
hepatocytes in vitro treated with a combination of valproic acid and 40
mM ethanol for 24 hours show apoptosis. Cells treated with valproic
acid alone, however, showed only microvesicular steatosis without
apoptosis. In contrast, liver cells exposed only to 40 mM ethanol
without valproic acid showed mild steatosis without apoptosis /147/.

21

Authenticated | xajibim@mail.ru
Download Date | 6/16/12 12:18 AM



Vol. 18, No. 1, 2001 Effect of Drugs and Toxins on Apoptosis

10.4 Conclusions regarding drug-induced apoptosis in vitro

We have been able to show in a series of in vitro studies using skin
cells and human liver cells that a variety of different drugs are able to
induce apoptosis in hepatocytes and skin cells, including metho-
trexate, acetaminophen and valproic acid. The addition of these drugs
to tissue culture environments presenting specific metabolic stresses to
these cells, such as induction of specific cytochrome P450s or
depletion of glutathione, has been shown to enhance the induction of
apoptosis in vitro for skin cells and human liver cells. Intracellular
ATP levels in human T-cell lines have been shown by Eguchi et al.
/164/ to be critical in directing the process of cell death so that cells in
ATP-depleted conditions undergoing apoptosis can be driven towards
necrosis. Apoptosis of hepatocytes was also observed in liver biopsies
of patients treated with methotrexate for psoriasis. In summary, it has
been possible to undertake mechanistic studies of the induction of
apoptosis of human skin cells and human liver cells in vitro.
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